Fundamentos do conjuntos numéricos


Conjuntos Numéricos

Aula completa de matemática sobre Conjuntos Numéricos abrangendo: Conjunto vazio, Números naturais, Sub Conjuntos, Relação de Pertinência, Conjuntos numéricos fundamentais, Conjunto dos números racionais, irracionais, intervalos numéricos, conjunto dos números reais e muito mais.

Definição de Conjunto: Conjunto é o agrupamento de elementos que possuem características semelhantes.Os Conjuntos numéricos especificamente são compostos por números.
Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12, ... }.Esta forma de representar um conjunto, pela enumeração dos seus elementos, chama-se forma de listagem.
O mesmo conjunto também poderia ser representado por uma propriedade dos seus elementos ou seja, sendo x um elemento qualquer do conjunto P acima, poderíamos escrever:P = { x | x é par e positivo } = { 2,4,6, ... }Relação de pertinênciaSendo x um elemento do conjunto numérico A , escrevemos x 0 A , onde o símbolo 0significa "pertence a".Sendo y um elemento que não pertence ao conjunto A , indicamos esse fato com a notação y A.
O conjunto que não possui elementos , é denominado conjunto vazio e representado por .Com o mesmo raciocínio, e opostamente ao conjunto vazio, define-se o conjunto ao qual pertencem todos os elementos, denominado conjunto universo, representado pelo símbolo U.Assim é que, pode-se escrever como exemplos:i= { x; x x} e U = {x; x = x}.
Subconjunto
Se todo elemento de um conjunto A também pertence a um conjunto B, então dizemos que A é subconjunto de B e indicamos isto por A d B.Notas:a) todo conjunto numérico é subconjunto de si próprio. ( A d A )b) o conjunto vazio é subconjunto de qualquer conjunto. (id A)c) se um conjunto A possui m elementos então ele possui 2m subconjuntos.d) o conjunto formado por todos os subconjuntos de um conjunto A é denominado conjunto das partes de A e é indicado por P(A).Assim, se A = {c, d} , o conjunto das partes de A é dado por P(A) = { , {c}, {d}, {c,d}}e) um subconjunto de A é também denominado parte de A.
Conjuntos numéricos fundamentais
Entendemos por conjunto numérico, qualquer conjunto cujos elementos são números. Existem infinitos conjuntos numéricos, entre os quais, os chamados conjuntos numéricos fundamentais, a saber:Conjunto dos números naturaisN = {0,1,2,3,4,5,6,... }Conjunto dos números inteirosZ = {..., -4,-3,-2,-1,0,1,2,3,... }Obs: é evidente que N d Z.
Conjunto dos números racionais
Q = {x; x = p/q com p 0 Z , q 0 Z e q … 0 }.Temos então que número racional é aquele que pode ser escrito na forma de uma fração p/q onde p e q são números inteiros, com o denominador diferente de zero.Lembre-se que não existe divisão por zero!São exemplos de números racionais: 2/3, -3/7, 0,001=1/1000, 0,75=3/4, 0,333... = 1/3, 7 = 7/1, etc.Notas:a) é evidente que N d Z d Q.b) toda dízima periódica é um número racional, pois é sempre possível escrever uma dízima periódica na forma de uma fração.Exemplo: 0,4444... = 4/9 _
Conjunto dos números irracionais
I = {x; x é uma dízima não periódica}.Exemplos de números irracionais: = 3,1415926... (número pi = razão entre o comprimento de qualquer circunferência e o seu diâmetro)2,01001000100001... (dízima não periódica) 3 = 1,732050807... (raiz não exata).
Conjunto dos números reais
R = { x; x é racional ou x é irracional}.Notas:a) é óbvio que N d Z d Q d Rb) I d Rc) I cQ = Rd) um número real é racional ou irracional, não existe outra hipótese!
Intervalos numéricos
Dados dois números reais p e q, chama-se intervalo a todo conjunto de todos números reais compreendidos entre p e q , podendo inclusive incluir p e q. Os números p e q são os limites do intervalo, sendo a diferença p - q , chamada amplitude do intervalo. Se o intervalo incluir p e q , o intervalo é fechado e caso contrário, o intervalo é dito aberto. A tabela abaixo, define os diversos tipos de intervalos.