Movimento através da membrana

INTRODUÇÃO
O presente trabalho visa a falar sobre o movimento através da membra que por sua vez define-se como uma estrutura fina que envolve todas as células vivas, tanto as procarióticas como as eucarióticas. Ela estabelece a fronteira entre o meio intracelular (interior da célula) e o ambiente extracelular (exterior). A membrana celular não é apenas uma barreira, mas também uma “porta” seletiva, permitindo que a célula capture, para seu interior, apenas os elementos do meio exterior que lhe são necessários. Além disso, permite que a célula libere algumas substâncias do seu interior para o exterior, conforme sua necessidade. Essa capacidade da membrana em controlar a entrada e a saída de determinadas substâncias da célula, chama-se permeabilidade seletiva, sendo essa propriedade fundamental para manter intacta a composição química do interior da célula. Outra propriedade da membrana plasmática é permitir que a célula relacione-se com exterior, reconhecendo substâncias químicas do meio externo através da interação destas substâncias com proteínas presentes na membrana celular. Por exemplo, quando a taxa de glicose no sangue está elevada, as moléculas de glicose interagem com proteínas presentes na membrana plasmática das células do pâncreas, desencadeando uma série de reações químicas no interior da dessas células, culminando na produção de insulina. A insulina é liberada do interior da célula para o meio externo através da membrana plasmática. Assim, podemos descrever as principais funções da membrana celular:
·         Envolver a célula, separando o meio intracelular do extracelular
·         Garantir a manutenção da composição química da célula através da permeabilidade seletiva
·         Permitir que a célula relacione-se com o meio externo
·         Ao regular sua composição química e separar a célula do meio externo, a membrana celular deu à célula a propriedade da individualidade, ou seja, permitiu reconhecer a célula como um indivíduo, uma unidade capaz de ter seu próprio metabolismo e reproduzir-se. Em última análise, foi a membrana celular que deu a célula o título de menor unidade viva.




ESTRUTURA E COMPOSIÇÃO QUÍMICA
Todas as células apresentam membrana celular com estrutura e composição química é muito semelhante. Além disso, nas células eucariontes, o núcleo, as mitocôndrias e os cloroplastos, também estão envoltos por uma membrana, semelhante à membrana celular. A membrana plasmática é formada basicamente por fosfolipídios, proteínas e carboidratos, no entanto a proporção entre essas substâncias pode variar conforme o tipo de membrana, por exemplo, nas células nervosas, as membranas de mielina contêm 80% de lipídios, pois possuem a função de isolante elétrico. Já nas mitocôndrias, a membrana possui apenas 25% de lipídios, predominando as proteínas na sua constituição.
A membrana plasmática é formada por duas camadas de fosfolipídios com moléculas de proteínas inseridas nessas camadas. Os fosfolipídios são moléculas constituídas por duas cadeias longas de ácidos graxos e um grupo fosfato. Isso permite dividir os fosfolipídios em duas regiões, uma região hidrofílica onde se localiza o fosfato, e uma região hidrofóbica, onde se localizam as duas cadeias de ácidos graxos. Podemos representar a molécula de fosfolipídios com uma "cabeça", que contém o fósforo, e uma região formada por duas "caudas", constituída pelas duas longas cadeias de ácidos graxos. A região da "cabeça" é hidrofílica, ou seja, atrai a água. Já a região da "cauda" é hidrofóbica, ou seja, repele a água. As moléculas das duas camadas de fosfolipídios da membrana estão organizadas de tal forma que suas cabeças hidrofílicas fiquem voltadas para o meio extracelular ou para o citoplasma. Já as caudas hidrofóbicas estão voltadas umas para as outras, constituindo a parte interna da membrana celular. Assim, podemos dizer que a membrana plasmática é formada por três regiões: uma camada central hidrofóbica e duas camadas periféricas hidrofílicas (uma voltada para o meio externo e outra voltada para o meio intracelular).
Essas duas camadas de fosfolipídios são fluidas, com consistência semelhante ao óleo, permitindo, dessa forma, que os fosfolipídios e as proteínas mudem de posição continuamente. Assim, diz se que a membrana plasmática é um mosaico fluido, sendo essa teoria proposta inicialmente por Singer e Nicholson em 1972. Ao microscópio eletrônico a membrana plasmática aparece como duas linhas escuras separadas por uma faixa central clara, com uma espessura de 7 a 10 nanômetros. Esta estrutura trilaminar é denominada unidade de membrana e é visível em todas as membranas celulares. A parte escura representa as extremidades hidrofílicas ou polares, já a porção clara, representa as cadeias longas de ácidos graxos, ou seja, a porção hidrofóbica ou apolar. Em média, a lâmina clara central mede cerca de 3,5 nanômetros, enquanto que as lâminas escuram tem espessura média de 2,0 nanômetro cada uma. A unidade de membrana está presente em todas as células, mas ela varia consideravelmente sua composição química e funções biológicas, mesmo em uma única célula. Por exemplo, a membrana que recobre as microvilosidades das células intestinais possui enzimas digestivas que não são encontradas em outros locais da membrana dessas células.

TRANSPORTE DE SUBSTÂNCIAS ATRAVÉS DA MEMBRANA
Para as diferentes substâncias entrarem ou saírem da célula, é necessário que elas atravessem a membrana celular. O transporte de substâncias através da membrana permite a entrada de nutrientes na célula, a saída de metabólitos e a secreção de substâncias produzidas no interior da célula, como por exemplo a insulina, que é produzida pelas células do pâncreas e posteriormente secretada para o meio externo quando o nível de glicose no sangue está alto. A capacidade de permitir o transporte de substâncias faz da membrana plasmática uma importante estrutura reguladora da composição química da célula, uma vez que ao eliminar as substâncias indesejadas e as que estão em excesso, garante a constância química e o equilíbrio meio interno da célula.
Há diversas maneiras pela qual as substâncias podem atravessar a membrana celular. Algumas substâncias atravessam livremente a membrana plasmática, outras atravessam por meio de poros proteicos e há aquelas que movem-se através da membrana com a ajuda de proteínas transportadoras. Esses processos permitem o transporte de íons e pequenas moléculas, entretanto, a membrana é capaz de transportar de uma só vez, grande quantidade de macromoléculas ou pequenas partículas, por meio de modificações morfológicas da membrana, como será discutido mais adiante.
O transporte de substâncias através da membrana pode ser divido de acordo com o gasto energético necessário para sua realização. Quando o transporte consome energia da célula, dizemos que se trata de um transporte ativo. Quando a movimentação de substâncias não consome energia da célula, dizemos que é um transporte passivo. Outra divisão do transporte de substâncias pela membrana é pela formação ou não de vesículas na membrana, possibilitando que a célula transporte uma maior quantidade de substâncias como macromoléculas e até outros microrganismos como bactérias. Esse tipo de transporte que ocorre em bloco, permite a movimentação de grande quantidade de substâncias através da membrana e por isso recebe o nome de transporte em quantidade. Assim, podemos classificar o transporte através da membrana da seguinte forma:
Tipo de transporte
Gasto de energia
Formação de vesículas
Difusão simples
Não
Não
Osmose
Não
Não
Difusão facilitada
Não
Não
Transporte contra gradiente eletroquímico
Sim
Não
Endocitose
Sim
Sim
Exocitose
Sim
Sim

ENDOCITOSE E EXOCITOSE
Enquanto que a difusão simples e facilitada e o transporte ativo são mecanismos de entrada ou saída para moléculas e ions de pequenas dimensões, as grandes moléculas ou até partículas constituídas por agregados moleculares são transportadas através de outros processos.
Endocitose
Este processo permite o transporte de substâncias do meio extra- para o intracelular, através de vesículas limitadas por membranas, a que se dá o nome de vesículas de endocitose ou endocíticas. Estas são formadas por invaginação da membrana plasmática, seguida de fusão e separação de um segmento da mesma.
Há três tipos de endocitose: pinocitose, fagocitose e endocitose mediada.
Pinocitose
Neste caso, as vesículas são de pequenas dimensões e a célula ingere moléculas solúveis que, de outro modo, teriam dificuldades em penetrar a membrana.
O mecanismo pinocítico envolve gasto de energia e é muito seletivo para certas substâncias, como os sais, aminoácidos e certas proteínas, todas elas solúveis em água.

http://www.sobiologia.com.br/figuras/Citologia/pinostose2.jpg
Este processo, que ocorre em diversas células, tem uma considerável importância para a Medicina: o seu estudo mais aprofundado pode permitir o tratamento de grupos de células com substâncias que geralmente não penetram a membrana citoplasmática (diluindo-as numa solução que contenha um indutor de pinocitose como, por exemplo, a albumina, fazendo com que a substância siga a albumina até ao interior da célula e aí desempenhe a sua função).
Endocitose mediada
Se a invaginação da membrana for desencadeada pela ligação de uma determinada substância a um constituinte específico da membrana trata-se de um processo de endocitose mediada e chama-se a esse constituinte receptor.
Para entrar na célula deste modo é necessário que a membrana possua receptores específicos para a substância em questão.
Este mecanismo é utilizado por muitos vírus (como o HIV, por exemplo) e toxinas para penetrar na célula dado que ao longo do tempo foram desenvolvendo uma complementaridade com os receptores.
Este processo é também importante para a Medicina, pois foram introduzidos em medicamentos usados para destruir células tumorais fragmentos que se ligam aos receptores membranares específicos das células que se pretende destruir.

http://www.sobiologia.com.br/figuras/Citologia/endocitosemediada.jpg
Fagocitose
Este processo é muito semelhante à pinocitose, sendo a única diferença o fato de o material envolvido pela membrana não estar diluído.
Enquanto que a pinocitose é um processo comum a quase todas as células eucarióticas, muitas das células pertencentes a organismos multicelulares não efetuam fagocitose, sendo esta efetuada por células específicas. Nos protistas a fagocitose é freqüentemente uma das formas de ingestão de alimentos.
http://www.sobiologia.com.br/figuras/Citologia/fagocitose.jpg
Os glóbulos brancos utilizam este processo para envolver materiais estranhos como bactérias ou até células danificadas. Dentro da célula fagocítica, enzimas citoplasmáticas são secretadas para a vesícula e degradam o material até este ficar com uma forma inofensiva.
Exocitose
Enquanto que na endocitose as substâncias entram nas células, existe um processo inverso: a exocitose.
Depois de endocitado, o material sofre transformações sendo os produtos resultantes absorvidos através da membrana do organito e permanecendo o que resta na vesícula de onde será posteriormente exocitado.
A exocitose permite, assim, a excreção e secreção de substâncias e dá-se em três fases: migração, fusão e lançamento. Na primeira, as vesículas de exocitose deslocam-se através do citoplasma. Na segunda, dá-se a fusão da vesícula com a membrana celular. Por último, lança-se o conteúdo da vesícula no meio extracelular.
http://www.sobiologia.com.br/figuras/Citologia/digestao_intracelular.jpghttp://www.sobiologia.com.br/figuras/Citologia/exocitose.jpg 

Citosol, Citoplasma ou hialoplasma

Os primeiros citologistas acreditavam que o interior da célula viva era preenchido por um fluído homogêneo e viscoso, no qual estava mergulhado o núcleo. Esse fluido recebeu o nome de citoplasma (do grego kytos, célula, e plasma, aquilo que dá forma, que modela).
Hoje se sabe que o espaço situado entre a membrana plasmática e o núcleo é bem diferente do que imaginaram aqueles citologistas pioneiros. Além da parte fluida, o citoplasma contém bolsas e canais membranosos e organelas ou orgânulos citoplasmáticos, que desempenham funções específicas no metabolismo da célula eucarionte.

http://www.sobiologia.com.br/figuras/Citologia/composicao_celula.gif

O fluido citoplasmático é constituído principalmente por água, proteínas, sais minerais e açucares. No citosol ocorre a maioria das reações químicas vitais, entre elas a fabricação das moléculas que irão constituir as estruturas celulares. É também no citosol que muitas substâncias de reserva das células animais, como as gorduras e o glicogênio, ficam armazenadas.

http://www.sobiologia.com.br/figuras/Citologia/celanimal.jpg

Na periferia do citoplasma, o citosol é mais viscoso, tendo consistência de gelatina mole. Essa região é chamada de ectoplasma (do grego, ectos, fora). Na parte mais central da célula situa-se o endoplasma (do grego, endos, dentro), de consistência mais fluida.

http://www.sobiologia.com.br/figuras/Citologia/celvegetal2.jpg
CÉLULA VEGETAL
 Ciclose
O citosol encontra-se em contínuo movimento, impulsionado pela contração rítmica de certos fios de proteínas presentes no citoplasma, em um processo semelhante ao que faz nossos músculos se movimentarem. Os fluxos de citosol constituem o que os biólogos denominam ciclose. Em algumas células, a ciclose é tão intensa que há verdadeiras correntes circulatórias internas. Sua velocidade aumenta com elevação da temperatura e diminui em temperaturas baixas, assim como na falta de oxigênio.
Movimento amebóide
Alguns tipos de células têm a capacidade de alterar rapidamente a consistência de seu citosol, gerando fluxos internos que permitem à célula mudar de forma e se movimentar. Esse tipo de movimento celular, presente em muitos protozoários e em alguns tipos de células de animais multicelulares, é chamado movimento amebóide.
http://www.sobiologia.com.br/figuras/Citologia/ameboide2.gif http://www.sobiologia.com.br/figuras/Citologia/ameboide3.gifhttp://www.sobiologia.com.br/figuras/Citologia/ameboide.gif
O transporte ativo contra gradiente eletroquímico é dividido em primário e secundário, de acordo com o uso do ATP.

Transporte activo primário

Neste caso, proteína transportadora usa diretamente a energia do ATP para realizar o processo de transporte, sendo, portanto, a proteínas transportadora uma ATPase, ou seja, tem a capacidade de quebrar e molécula de ATP em ADP liberando energia nesse processo. O exemplo de transporte ativo primário é a bomba Na/K.

Transporte activo secundário

A proteínas transportadora não usa diretamente a energia do ATP, mas aproveita o gradiente eletroquímico gerado por uma bomba ATPase para realizar o transporte de substâncias, assim, o uso de energia é feito indiretamente. Por exemplo, as células intestinais devem absorvem grande quantidade de glicose provinda dos alimentos, para isso, elas usam uma proteína transportadora chamada cotransportador Na/glicose. Primeiramente, a bomba Na/K, gastando energia, mantém a concentração de sódio baixa dentro da célula, criando uma gradiente eletroquímico de sódio entro o meio interno e externo, uma vez que o meio externa está com excesso de sódio e cargas positivos em relação ao meio interno. Assim, a tendência é o sódio entrar por difusão na célula. A glicose aproveita-se dessa tendência do sódio entrar na célula e pega "carona" com ele, num transporte conjunto através do cotransportador Na/glicose. Esse transportador capta o sódio e a glicose do meio extracelular e transporta para o meio intracelular. O sódio movimenta-se a favor do gradiente eletroquímico mas a glicose movimenta-se contra o gradiente eletroquímico, uma vez que a concentração de glicose no interior da célula e maior. Assim, a glicose é transportado contra um gradiente eletroquímico, através do contrasportador Na/glicose, o qual não usa energia diretamente mas aproveita-se da energia usada pela bomba Na/K para gerar o gradiente eletroquímico do sódio. Dizemos também que o transporte ativo secundário pode ser classificado em cotransporte, quando dois íons são transportados na mesma direção e contratransporte, quando os íons são transportados em direções diferentes, como por exemplo, o transporte de aminoácido para fora da célula, que ocorre através do trocador Na/aminoácidos, onde o sódio entra na célula favorecido pelo seu gradiente eletroquímico enquanto que o aminoácido é transportado para fora da célula.
·         O transporte contra gradiente eletroquímico, como o próprio nome diz, ocorre contra um gradiente de concentração (químico) e um gradiente elétrico.
·         Há participação de uma molécula transportadora,que pode ser uma ATPase, um cotransportador ou um trocador (contratransportador).
·         Ocorre gasto de energia.
·         Pode ser primário quando há uso direto de energia do ATP, ou secundário, quando há uso indireto da energia do ATP.
·         O transporte ativo secundário pode ser classificado em cotransporte (mesmo sentido) ou contratrnasporte (sentidos opostos).



CONCLUSÃO
Chegamos a conclusão de que membrana é considerada semipermeável, pois, mesmo deixando passar solutos através dela, a permeabilidade à água é muito maior, permitindo que grande quantidade de água entre ou saia da célula com facilidade. Para exemplificar, coloquemos uma célula animal numa solução com alta concentração de qualquer soluto, por exemplo, cloreto de sódio. Nessa situação, a solução tem uma maior concentração de soluto (maior pressão osmótica) e uma menor concentração de água (solução hipertônica em relação à célula), portanto, a água move-se do interior da célula para a solução de cloreto de sódio, e, consequentemente, a célula perde água, ou seja, desidrata, ficando a célula com um menor volume e com sua membrana de aspecto enrugado. Agora, se colocarmos a célula em um meio com menor concentração de solutos (menor pressão osmótica) e maior concentração de água (solução hipotônica em relação à célula), a água irá mover-se da solução para o interior da célula, fazendo com que a mesma aumente seu volume, ficando cada vez mais inchada até chegar ao ponto onde ocorre ruptura da membrana; fenômeno esse chamado de lise celular. Quando colocamos a célula numa solução com concentração de solutos e água semelhantes ao seu interior (solução isotônica em relação à célula), a quantidade de água que entra e sai da célula será a mesma, permanecendo a célula com seu volume constante.
BIBLIOGRAFIA
Movimento através da membrana: Acessado aos 16 de Março de 2015. Disponível em: http://www.sobiologia.com.br/conteudos/Citologia/cito16.php.

Transporte por exocitose e endocitose: Acessado aos 16 de Março de 2015. Disponível em: http://pt.wikibooks.org/wiki/Introdu%C3%A7%C3%A3o_%C3%A0_Biologia/C%C3%A9lula/Estrutura_e_organiza%C3%A7%C3%A3o_da_c%C3%A9lula/Membrana_plasm%C3%A1tica

Faça Comentário